Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways.

نویسندگان

  • Allen C Myers
  • Radhika Kajekar
  • Bradley J Undem
چکیده

In the vagal-sensory system, neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) are synthesized nearly exclusively in small-diameter nociceptive type C-fiber neurons. By definition, these neurons are designed to respond to noxious or tissue-damaging stimuli. A common feature of visceral inflammation is the elevation in production of sensory neuropeptides. Little is known, however, about the physiological characteristics of vagal sensory neurons induced by inflammation to produce substance P. In the present study, we show that allergic inflammation of guinea pig airways leads to the induction of substance P and CGRP production in large-diameter vagal sensory neurons. Electrophysiological and anatomical evidence reveals that the peripheral terminals of these neurons are low-threshold Adelta mechanosensors that are insensitive to nociceptive stimuli such as capsaicin and bradykinin. Thus inflammation causes a qualitative change in chemical coding of vagal primary afferent neurons. The results support the hypothesis that during an inflammatory reaction, sensory neuropeptide release from primary afferent nerve endings in the periphery and central nervous system does not require noxious or nociceptive stimuli but may also occur simply as a result of stimulation of low-threshold mechanosensors. This may contribute to the heightened reflex physiology and pain that often accompany inflammatory diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective stimulation of jugular ganglion afferent neurons in guinea pig airways by hypertonic saline.

We evaluated the ability of hyperosmolar stimuli to activate afferent nerves in the guinea pig trachea and main bronchi and investigated the neural pathways involved. By using electrophysiological techniques, studies in vitro examined the effect of hyperosmolar solutions of sodium chloride (hypertonic saline) on guinea pig airway afferent nerve endings arising from either vagal nodose or jugula...

متن کامل

Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs.

The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, r...

متن کامل

TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors.

We addressed the hypothesis that allergic inflammation in guinea pig airways leads to a phenotypic switch in vagal tracheal cough-causing, low-threshold mechanosensitive Aδ neurons, such that they begin expressing functional transient receptor potential vanilloid (TRPV1) channels. Guinea pigs were actively sensitized to ovalbumin (OVA) and beginning 21 days later exposed via aerosol to OVA dail...

متن کامل

Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation.

Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airwa...

متن کامل

Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves in the guinea pig.

Sensory nerves play an important role in airway disease by mediating central reflexes such as cough, and local axon reflexes resulting in the peripheral release of neuropeptides. We have tested whether the benzimidazolone compound, NS1619, an opener of large conductance calcium-activated potassium (BK Ca) channels, inhibits the activity of sensory fibers, and central and local airway reflexes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 282 4  شماره 

صفحات  -

تاریخ انتشار 2002